In the first quarter of 2018, MobyMax conducted an independent, large-scale experimental study with over 4,000 students in 230 classrooms across the United States to test the efficacy of MobyMax Language.

The “Gold Standard” study used a randomized control experimental design that qualifies as “Tier 1 – Strong Evidence” under the ESSA guidelines for evidence-based interventions. In addition, the study was designed to meet the evidence standards of the IES and WWC.

The study showed that MobyMax Language was very effective at producing positive student growth with an effect size of 0.873. This is the equivalent of more than one year of academic growth from just 30 minutes of use per week.

The students in the experimental group using MobyMax showed a 138% improvement over the students in the control group who did not use MobyMax. Both groups had the same basal instruction within their classroom.
Table of Contents

Executive Summary ... 3
Project Background ... 4
 Every Student Succeeds Act (ESSA) Requirements ... 4
 Study Qualifies as ESSA Tier 1 “Strong Evidence” .. 4
Design and Methodology ... 5
 Groups ... 5
 Student Time Worked .. 5
 Pre- and Post-tests .. 5
 Study Hypotheses .. 5
 Sample Description ... 7
Results ... 10
 Study Question 1: .. 10
 Study Question 2a: ... 11
 Study Question 2b: ... 12
 Study Question 3: .. 14
 Study Question 4a: .. 15
 Study Question 4b: .. 16
 Study Question 5a: .. 17
 Study Question 5b: .. 18
 Study Question 6: .. 19
Conclusion .. 20
References .. 21
Appendix – Graphs .. 22
 Appendix A: Data Outliers .. 22
 Appendix B: Control and Experimental Group baseline comparisons 24
 Appendix C: Study Question 6 with Grade Level < 8 ... 25
 Appendix D: Variance Inflation Factor Analysis .. 26
Executive Summary

Background

MobyMax creates digital curriculum, assessments, and learning tools for teachers and students in grades K-8. MobyMax products are used in over 82% of all K-8 schools in the United States. This study focuses specifically on MobyMax’s K-8 Language Curriculum (MobyMax Language).

Purpose

The main purpose of this study was to examine the efficacy of MobyMax Language. In addition, data was collected on factors that contributed to making MobyMax Language effective in producing positive student outcomes.

Setting

The study was conducted on over 4,000 students in 230 classrooms from a representative sample of K-8 schools across the United States during the first quarter of 2018.

Conclusion

The study showed that MobyMax Language has a statistically significant positive effect on improving student outcomes with an effect size of .873. This equates to more than one school year of growth with just 30 minutes of use per week.

Given the size and design of the study, the results of the analysis indicate MobyMax Language is an effective intervention that reliably produces positive student outcomes for K-8 students.
Project Background

This research is an effort to provide evidence of the efficacy of MobyMax Language in improving student proficiency. This study was designed to address the ESSA requirements for evidence-based interventions and adhere to Tier 1 criteria for strong evidence of effectiveness.

Every Student Succeeds Act (ESSA) Requirements

The ESSA requires that all practices or programs be evidenced based. It defines four tiers of evidence based on strength:

- Tier 1 – strong evidence – a program or practice that is supported by at least one randomized control experimental study
- Tier 2 – moderate evidence – a program that is supported by at least one quasi-experimental study
- Tier 3 – promising evidence – a program or practice that is supported by at least one correlational study with statistical controls for selection bias
- Tier 4 – demonstrates a rationale – a program or practice that has a well-defined logic model or theory of action, is supported by research, and has some effort underway to determine its effectiveness

Study Qualifies as ESSA Tier 1 “Strong Evidence”

ESSA requirements to qualify as strong evidence are:

1. *The study must be a well-designed and well-implemented randomized control experimental study.*
The study employed a randomized control experimental design. In addition, the study was designed to meet the What Works Clearinghouse (WWC) evidence standards.

2. *The statistical analysis must demonstrate a statistically significant positive effect on improving student outcomes.*
The study showed that MobyMax Language has a statistically significant positive effect on improving student outcomes with an effect size of .873. This equates to more than one school year of academic growth with just 30 minutes of use per week.

3. *The study must use a large, multisite sample that overlaps with the populations proposed to receive the intervention.*
The study was based on a representative sample of K-8 schools across the United States that included over 4,000 students in 230 classrooms. A large sample, as defined by ESSA, is a sample of 350 or more students or 50 or more classrooms.
Design and Methodology

Groups

- MobyMax randomly divided the students in each classroom into two equally sized groups: a math group and a language group.
- The language group was the experimental group. Students in this group worked in MobyMax Language for 10 weeks. The math group was the control group. Students in this group worked in MobyMax Math for 10 weeks and were not permitted to work in MobyMax Language.
- Teachers continued to teach their standard curriculum throughout the course of the study. MobyMax was used as a supplement.
- Because the control and experimental groups were created within classrooms rather than between classrooms, factors related to the classrooms, teachers, or schools are controlled for experimentally. This methodological control is both important and uncommon for large-scale education experiments.
- Since the control and experimental groups in each classroom received the same basal curriculum, the effect of the basal curriculum is accounted for by subtracting the growth of the control group from the growth of the experimental group.

Student Time Worked

- Students were asked to work three hours per week in their respective subjects with the expectation that the actual time spent would vary considerably. The time variation allowed the study to analyze the relation between time spent and student improvement.
- The actual time spent by individual students varied from over 5 hours per week to 1 hour per week. The study did not include classrooms that averaged less than 1 hour per week in the analysis.

Pre- and Post-tests

- Students were tested at the onset and conclusion of the study with two tests: a language placement test that covered grades K through 8 and a language benchmark test that covered each student’s current grade level.

Study Hypotheses

This study analyzed six questions concerning the effectiveness of MobyMax Language:

- **Study Question 1**: How effective is MobyMax Language at producing student growth when used as a supplement to basal curriculum?

- **Study Question 2a**: Within the experimental group, do students with a high Prior Year Learning Deficit (PYLD) experience more growth than students with a low PYLD, and if so, how much?
• **Study Question 2b:** Within the experimental group, which variables for the high PYLD quartile students are the most significant in terms of growth compared to students in the Low PYLD quartile?

• **Study Question 3:** Within the experimental group, is overall time spent using MobyMax Language correlated with student growth?

• **Study Question 4a:** Is the number of problems completed in MobyMax Language correlated with student growth?

• **Study Question 4b:** Is the number of problems completed correctly correlated with student growth?

• **Study Question 5a:** Do students in special education classrooms experience higher growth when using MobyMax Language than students in general education classrooms?

• **Study Question 5b:** Within the experimental group, are there differences in factor importance when comparing special education and general education students with respect to growth produced by MobyMax Language, and if so, which variables?

• **Study Question 6:** Does grade level will have a significant effect on student growth?
Data Measures

ResearchGroup: Control or Experimental

ClassroomType: Special Education or General Education

LanguageBasalTime: From the survey, teacher’s estimate of time students spent per week on basal curriculum plus time spent on other (non-Moby) supplemental curriculum

GradeLevel: The actual grade level of the student assigned by the teacher. Note that grade 0 = grade K.

ScorePlacementInitialOverall: The overall score from the initial placement test

ScorePlacementEndOverall: The overall score from the ending placement test

Gain: ScorePlacementEndOverall – ScorePlacementInitialOverall

TimeTotal: Total time spent in MobyMax in seconds. Note that this includes the time spent taking the placement tests. As a result, students in the control group also have time for TimeTotal, but it should not count as time spent in Moby supplemental curriculum. Similarly, this time coming from the placement tests should be subtracted out of the experimental group time, which could be done by taking the average time spent taking the placement test for the control group (i.e. TimeTotal for control students), and subtracting that value out of the TimeTotal of each individual experimental student.

ProblemTotal: Total number of problems done. Note that this does NOT include the placement test problems, so these are all problems that count as MobyMax supplemental curriculum (unlike the TotalTime field).

ProblemCorrect: Total number of problems done correctly. Note that this does NOT include the placement test problems, so these are all problems that count as MobyMax supplemental curriculum.

PYLD: Prior Year Learning Deficit = GradeLevel (the actual grade level such as 5.0 for 5th grade) - ScorePlacementPriorLevelInitial (the sum of all the prior grade levels before the 5th grade)

Sample Description

The study was conducted on over 4,000 students in 230 classrooms from a representative sample of K-8 schools across the United States. To select the classrooms for participation,
teachers with MobyMax licenses and between 8 and 35 students in their classroom were emailed information about the study and about how to register their classroom if interested in participating. Participation was limited to one classroom per school.

Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Ed: n</td>
<td>447</td>
<td>458</td>
</tr>
<tr>
<td>General Ed: n</td>
<td>1775</td>
<td>1803</td>
</tr>
<tr>
<td>Language: Mean</td>
<td>5.77</td>
<td>5.72</td>
</tr>
<tr>
<td>Language: sd</td>
<td>4.09</td>
<td>3.98</td>
</tr>
<tr>
<td>Grade Level: mean</td>
<td>3.37</td>
<td>3.36</td>
</tr>
<tr>
<td>Grade Level: sd</td>
<td>1.72</td>
<td>1.67</td>
</tr>
<tr>
<td>Score (initial): mean</td>
<td>2.64</td>
<td>2.60</td>
</tr>
<tr>
<td>Score (initial): sd</td>
<td>1.43</td>
<td>1.47</td>
</tr>
<tr>
<td>Score (end): mean</td>
<td>3.32</td>
<td>4.22</td>
</tr>
<tr>
<td>Score (end): sd</td>
<td>1.53</td>
<td>1.86</td>
</tr>
<tr>
<td>PYLD: mean</td>
<td>13.72</td>
<td>14.09</td>
</tr>
<tr>
<td>PYLD: sd</td>
<td>12.53</td>
<td>12.98</td>
</tr>
</tbody>
</table>

Table 1 presents baseline data on the final cohort to be analyzed. Given the study design, the number of observations, and the randomization protocol, there were no significant statistical differences between the control and experimental groups on baseline measurements at the \(p = .33 \) or greater level including PYLD (Prior Year Learning Deficit). A lower PYLD indicates a lower baseline learning deficit and would tend to make estimates of the overall study effects weighted against finding results and thus more conservative.

1 These data include students in the control group who answered any MobyMax Language problems or students in the Experiment group who did not answer any supplemental problems as indicated in the description for the ProblemTotal variable. In addition, there were several outliers in the experimental group which were included as described in Appendix A. This follows an intent-to-treat protocol as the most robust and conservative observation inclusion criteria for randomized control trials.

2 Appendix B compares the two groups on baseline measurements.
In addition, following a more conservative inclusion/exclusion criteria for the analysis data, intention-to-treat (ITT) analysis was followed rather than per-protocol analysis. Randomized controlled trials often result in two major study problems: protocol non-compliance and missing outcomes data. For this study the first problem showed up in a number of controls not following protocol and using MobyMax material when they should not have. Intention-to-treat essentially includes all observations based upon randomization assignment. Problems with subjects not following protocol, or any non-compliance issues, are ignored after randomization. Consequently, ITT analysis estimates result in generally conservative treatment effects.\(^3\)

\(^3\) Gupta, Sandeep K. (2011): Intention-to-treat: A Review
Results

Study Question 1: How effective is MobyMax Language at producing student growth when used as a supplement to basal curriculum.

The experimental group exhibited more than 0.936 grade levels more growth than the control group (1.613 – 0.677 = .936). This result was significant at the $p < .001$ level. Given the randomized design of the study and that baseline measures of performance showed either no statistical difference between the control and experimental groups or mitigated against finding results,4 this gain can be attributed to the MobyMax Language.

4 As indicated in Table 1
The effect size for MobyMax Language was .873. An effect size of this magnitude qualifies MobyMax Language as a “highly effective” treatment for improving student outcomes. Effect size was calculated using Cohen’s d, a widely used method for calculating the difference between two means, measured in standard deviations.

Study Question 2a: Within the experimental group, do students with a high PYLD experience more growth than students with a low PYLD, and if so, how much?

 PYLD (Prior Year Learning Deficit) is a measure of overall current grade level controlling for previous grade levels. Thus, a higher PYLD indicates a greater learning deficit (i.e. missing skills from previous grade levels). Within the experimental group, the PYLD was separated into
quartiles. The lowest quartile (those students with the smallest learning deficit) were then compared to the highest quartile (those students with the greatest learning deficit). Students with the greatest deficit (High PYLD) showed an increased growth ($1.73 - 1.35 = .38$) over those with the smallest deficit (Low PYLD). This result was significant at the $p < .001$ level. Put another way, those with the highest learning deficit benefitted the most from MobyMax Language, although both groups indicated substantial gain.

Study Question 2b: Within the experimental group, which variables for the high PYLD quartile students are the most significant in terms of growth compared to students in the Low PYLD quartile?5

Given the placement test score gain differences between the Q1 and Q4 PYLD quartiles in the experimental group, additional statistical models were run to delve into possible reasons for this result. Table 2b compares a regression for the full experimental group, PYLD Q1, and PYLD Q46. The adj. R^2 for the full experimental group regression was .533. This indicates that variables included in the model explain ~53% of the variance in the outcome variable MobyMax score gain. Other than LanguageBasalTime (teacher estimate of non-MobyMax time spent on supplemental language material), all other variables in the equation are significant at the $p < .001$ level. Specifically, controlling for TimeTotal and ProblemTotal, the more likely a student was in a general education classroom, the higher the grade level, the lower the initial placement test score, and the higher the Prior Year Learning Deficit (PYLD), the higher the MobyMax score gain.

However, when running separate regressions for the top and bottom quartiles, a more nuanced picture emerges. For the Q1 PYLD quartile, ClassroomType, GradeLevel, and TimeTotal remain significant indicators for improving the MobyMax gain but the initial placement test score (Score_Initial) is no longer a statistically significant factor.

For the Q4 PYLD group (those students showing the greatest grade level deficit), controlling for other individual student characteristics, ClassroomType and GradeLevel remain significant predictors but Score_Initial and TimeTotal become non-significant. The ClassroomType effect size is over 2X the effect size compared to the Q1 Group overall. Specifically, a student in a general education classroom (ClassroomType = 2) has a Score Gain of 0.457 compared to a score gain of only .204 for a student in a special education classroom. This result speaks to significant differences in the overall effectiveness of MobyMax Language in different classroom settings and indicates possible tailoring of material for different types of classes going forward.

5 To control for time and number of problem effects, ProblemTotal was included in the regression. The variable was significant at the $p < .001$ level but the effect size was $< .00001$ so not reported in the table.

6 Appendix D shows the results of a Variance Inflation Factor analysis. Any variable with a VIF > 10 is excluded. The model is then re-run without the excluded variable and the VIFs of the remaining variables is calculated. This process stops when all the remaining variables have a VIF < 5.
Table 2b: Score Gain determinants by PYLD Quartile

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Language Gain</th>
<th></th>
<th>Gain (PYLD - Q1)</th>
<th></th>
<th>Gain (PYLD - Q4)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.104</td>
<td>0.084</td>
<td>-0.033</td>
<td>0.142</td>
<td>-0.068</td>
<td>0.188</td>
</tr>
<tr>
<td>ClassroomType</td>
<td>0.356 ***</td>
<td>0.037</td>
<td>0.204 **</td>
<td>0.073</td>
<td>0.457 ***</td>
<td>0.068</td>
</tr>
<tr>
<td>LanguageBasalTime</td>
<td>-0.004</td>
<td>0.004</td>
<td>0.001</td>
<td>0.006</td>
<td>-0.014</td>
<td>0.008</td>
</tr>
<tr>
<td>GradeLevel</td>
<td>0.205 ***</td>
<td>0.028</td>
<td>0.104 *</td>
<td>0.041</td>
<td>0.047</td>
<td>0.029</td>
</tr>
<tr>
<td>Score_Initial</td>
<td>-0.134 ***</td>
<td>0.024</td>
<td>-0.036</td>
<td>0.033</td>
<td>0.037</td>
<td>0.039</td>
</tr>
<tr>
<td>TimeTotal</td>
<td>0.011 ***</td>
<td>0.002</td>
<td>0.021 ***</td>
<td>0.003</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>PYLD</td>
<td>-0.012 ***</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>2261</td>
<td></td>
<td>566</td>
<td></td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>R² / adj. R²</td>
<td>.534 / .533</td>
<td></td>
<td>.488 / .482</td>
<td></td>
<td>.494 / .489</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>* p<.05</td>
<td></td>
<td>** p<.01</td>
<td></td>
<td>*** p<.001</td>
<td></td>
</tr>
</tbody>
</table>
Study Question 3: Within the experimental group, is overall time spent using MobyMax Language correlated with higher student growth?

Within the experimental group, the correlation between Total Time spent on MobyMax Language and score gain was calculated with an associated scatter plot and blue line with grey data dispersion region to highlight the relationship between the two measures. A correlation of .561,

7 The *TimeTotal* variable is time spent only on MobyMax supplemental materials and does not include time spent in class on language-related lessons and material.

8 For the correlational analyses and graphs, a LOWESS (Locally Weighted Scatterplot Smoothing) method was used. As the data become more sparse for results at the margins, the visual accuracy (given by the grey line) diminishes.
significant at the $p < .001$ level, indicates a moderately strong relationship between total time spent using MobyMax Language and score gain. Put another way, $> 31\%$ of the variation in MobyMax score gain can be attributed to the TimeTotal variable.\(^9\) While not statistically controlling for other variables factoring into MobyMax score gain, it is in line with basic intuition. The more time a student spends in MobyMax Language, the better the results.

Study Question 4a: Is the number of problems completed in MobyMax Language correlated with higher student growth?

\[
\text{Study Question 4a: Exp. group - Number of Problems prop. to Moby Lang. Gain}
\]

\[
\text{Correlation Coef: 0.693, p < .001}
\]

Similar to the examination of the relation between total time spent in MobyMax Language and score gain, the correlation between the number of problems completed in MobyMax Language and score gain within the experimental group was calculated and illustrated with an associated scatter plot and line. While total time and number of problems completed are related, this question might be more associated with student focus on the supplemental material as opposed to just time spent on the material. A correlation of .693, significant at the $p < .001$ level, indicates a strong relationship between the number of problems and MobyMax score gain. Put another way, 48% of the variation in MobyMax score gain can be attributed to the total number of problems completed.\(^{10}\) Since the correlation coefficient for Number of Problems Completed ~ Score Gain is greater than the correlation coefficient for Total Time ~ Score Gain, it is likely that effort and

\(^9\) Since this statistic doesn’t control for other effects it should be seen as a general indicator of the importance of the statistical relationship.

\(^{10}\) Again, this result should be interpreted as a general indicator of the importance of the statistical relationship.
focus while using MobyMax Language are more important than simply time spent in the program.

Study Question 4b: Is the number of problems *completed correctly* correlated with higher student growth?

![Graph showing correlation between number of problems completed correctly and MobyMax score gain](image)

In this analysis, the relationship between number of problems *completed correctly* and MobyMax score gain is examined. Similar to the analysis on total number of problems completed, a correlation of .775, significant at the \(p < .001 \) level, indicates a strong relationship between the number of problems completed correctly and score gain. With a somewhat higher correlation coefficient than in Study Question 4a, 60% of the variation in MobyMax score gain can be attributed to the number of problems completed correctly. This indicates that both effort and success factor significantly into higher MobyMax score gains. Again, while not statistically controlling for other variables associated with MobyMax score gain, it is in line with general intuition. The more problems a student worked on and the more success she had at solving those problems, the better the results.
Study Question 5a: Do students in special education classrooms experience higher student growth when using MobyMax than students in general education classrooms?

Within the Experimental group this analysis compares the MobyMax Language score gain of students in special education and general education classrooms. Given that an argument could be made for either classroom type benefitting more from the supplemental material, this comparison consisted of a two-sided t-test rather than a one-sided test. Using a two-sided test the overall result was significant at the $p < .01$ level. The effect size of the difference ($1.689 - 1.314 = .375$) is both statistically significant and relatively large. Being in a general education class indicates, on average, a .375 increase in score gain. To further examine reasons for this difference, a regression analysis was performed on each classroom type within the experimental group. The results are presented in Table 5b.
Study Question 5b: Within the experimental group, are there differences in factor importance when comparing special education and general education students with respect to growth produced by MobyMax Language, and if so, which variables?\(^\text{11}\)

Table 5b: Language Score Gain determinants by Classroom Type

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Language Gain</th>
<th>Gain (Special Educ.)</th>
<th>Gain (General Educ.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.104</td>
<td>0.084</td>
<td>0.604 ***</td>
</tr>
<tr>
<td>ClassroomType</td>
<td>0.356 ***</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>LanguageBasalTime</td>
<td>-0.004</td>
<td>0.004</td>
<td>0.006</td>
</tr>
<tr>
<td>GradeLevel</td>
<td>0.205 ***</td>
<td>0.028</td>
<td>0.213 ***</td>
</tr>
<tr>
<td>Score_Initial</td>
<td>-0.134 ***</td>
<td>0.024</td>
<td>-0.191 ***</td>
</tr>
<tr>
<td>TimeTotal</td>
<td>0.011 ***</td>
<td>0.002</td>
<td>0.010 **</td>
</tr>
<tr>
<td>PYLD</td>
<td>-0.012 ***</td>
<td>0.003</td>
<td>-0.020 **</td>
</tr>
<tr>
<td>Observations</td>
<td>2261</td>
<td>458</td>
<td>1803</td>
</tr>
<tr>
<td>R(^2) / adj. R(^2)</td>
<td>0.534 / 0.533</td>
<td>0.488 / 0.481</td>
<td>0.545 / 0.543</td>
</tr>
<tr>
<td>Notes</td>
<td>* p<.05</td>
<td>** p<.01</td>
<td>*** p<.001</td>
</tr>
</tbody>
</table>

The results of this analysis indicate some differences between special education and general education classrooms using MobyMax. The model’s statistical explanatory power, as indicated by the higher adj. R\(^2\), increases slightly when students in general education classrooms are considered separately from the complete experimental cohort. In addition, *Score_Initial* indicates a larger effect size for special education students than for general education students although the direction is the same for both. Namely, the lower initial placement test score factors into a higher final placement test gain. However, for special education students the coefficient for PYLD is negative and statistically significant at the p < .01 level, meaning a lower initial test score is associated with greater improvement at the end of the 10-week study period. PYLD is not significant for general education students. For both classroom types, the coefficient for *GradeLevel* is positive and statistically significant at the p < .001 level. Higher grade level students experience greater benefit from using MobyMax Language. And finally, for each extra hour of time spent on MobyMax supplemental material, students’ scores increase .011 and .012 for special and general education students respectively. This result is significant at the p < .001 for both classroom types.

\(^{11}\) As with the regression comparing PYLD quartiles, to control for time and number of problem effects, *TimeTotal* and *ProblemTotal* were included in the regression. Both were significant at the p < .001 level but only *TimeTotal* is shown in the table. The effect size for *ProblemTotal* was < .00001 so not reported in the table.
Study Question 6: Does overall grade level have a significant effect on student growth?

While statistically significant at the \(p < .001 \) level, the correlation coefficient of MobyMax Score Gain \(\sim \) Grade Level of 0.21 indicates a weak statistical relationship with \(\sim 4.4\% \) of the MobyMax score gain associated with increases in grade level. Further, for any student with a Grade Level \(> 8 \) the relationship is statistically tenuous as indicated by the downward direction of the trend line, and widening grey dispersion region.\(^\text{12}\) Given the significance of grade level in the two regression tables (baseline regression models for Table 2b and Table 5), for grade level to indicate any statistically significant relation to MobyMax score gain, other factors must be controlled for to show the marginal effect. Grade level, by itself, does not have a strong statistical relation to MobyMax score gain.

\(^{12}\) Appendix C is a sensitivity analysis by looking at the same question excluding students with GradeLevel \(> 8 \). The results reduce the correlation coefficient from .21 to .148 while remaining statistically significant.
Conclusion

The study showed that MobyMax Language has a statistically significant positive effect on improving student outcomes with an effect size of .873. This is equivalent to more than one school year of additional growth with 30 minutes of use per week.

The study randomized control and experimental groups within classrooms. The randomization procedure within classrooms strengthens the validity of statistical assumptions behind the methods used in the analysis. In addition, the sample size was large enough to examine subsets of the data with more than sufficient observations to allow more nuanced analysis.

Given the size and design of the study, the results of the analysis indicate MobyMax Language is an effective intervention that reliably produces positive student outcomes for K-8 students.

Appendix – Graphs

Appendix A: Data Outliers

A scatter plot of Score Gain vs Grade Level indicates one observation is a potential outlier with a Score Gain > 6. To maintain the robustness of the study randomization, and given that this observation is still within an acceptable score-gain range, it was kept in the data to be analyzed.
A scatter plot of Score Gain vs. Total Time (in hours) within the Experimental group indicates one observation as a potential outlier with Total Time > 150 hours. Since this is not necessarily an extreme value given the 10-week time frame for the study, this observation was included in the main analysis data to maintain adherence to the randomization ITT protocol.
Appendix B: Control and Experimental Group baseline comparisons

Appendix Table 1a: Random Design Descriptive statistics - Categorical Vars

<table>
<thead>
<tr>
<th>ClassroomType</th>
<th>ResearchGroup</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Ed</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Ed</td>
<td>1775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Ed</td>
<td>458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Ed</td>
<td>1803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2261</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Ed</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Ed</td>
<td>1775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Ed</td>
<td>1803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2261</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\chi^2=0.006 \cdot df=1 \cdot \phi=0.002 \cdot p=0.937$

Appendix Table 1b: Random Design Descriptive statistics - Numerical Vars

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>Experimental</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LanguageBasal</td>
<td>5.77</td>
<td>5.72</td>
<td>0.654</td>
</tr>
<tr>
<td>Grade Level</td>
<td>3.37</td>
<td>3.36</td>
<td>0.756</td>
</tr>
<tr>
<td>Initial Score</td>
<td>2.64</td>
<td>2.60</td>
<td>0.389</td>
</tr>
<tr>
<td>PYLD</td>
<td>13.72</td>
<td>14.09</td>
<td>0.334</td>
</tr>
</tbody>
</table>

Baseline measurements between Experimental and Control groups indicates none are statistically different at the $p < .334$ or greater level including the PYLD (Prior Year Learning Deficit).
After removing students with a Grade Level greater or equal to 8 from the Study Question 6 analysis, the results change very little although the higher Grade Level loess-smoothing line exhibits much less dispersion. In terms of the decrease in the strength of the statistical association between Grade Level and Score gain this translates into going from an r^2 of $< 4.4\%$ (0.21^2) to $< 2.19\%$ (0.148^2).
Appendix D: Variance Inflation Factor Analysis

Initial VIF analysis with all variables included

VIF analysis with GradeLevel (variable with highest VIF) removed
VIF analysis with *ProblemCorrect* (variable with next highest VIF) removed

Although the graph indicates that *ProblemTotal* has the next highest VIF, other variations on the VIF test showed that, on average, *ProblemCorrect* had the higher VIF.

1 Although the graph indicates that *ProblemTotal* has the next highest VIF, other variations on the VIF test showed that, on average, *ProblemCorrect* had the higher VIF.